Política de Cookies

El sitio web de la Universidad de Cádiz utiliza cookies propias y de terceros para realizar análisis de uso y medición del tráfico, así como permitir el correcto funcionamiento en redes sociales, y de este modo poder mejorar su experiencia de navegación.

Si desea configurar las cookies, pulse el botón Personalizar Cookies. También puede acceder a la configuración de cookies en cualquier momento desde el enlace correspondiente en el pie de página.

Para obtener más información sobre las cookies puede consultar la Política de cookies del sitio web de la Universidad de Cádiz.

Personalización de Cookies

El sitio web de la Universidad de Cádiz utiliza cookies propias y de terceros para realizar análisis de uso y medición del tráfico, así como permitir el correcto funcionamiento en redes sociales, y de este modo poder mejorar su experiencia de navegación.

Para obtener más información sobre las cookies puede consultar la Política de cookies del sitio web de la Universidad de Cádiz. También puede acceder a la configuración de cookies en cualquier momento desde el enlace correspondiente en el pie de página.

A continuación podrá configurar las cookies del sitio web según su finalidad:

  • Análisis estadístico

    En este sitio se utilizan cookies de terceros (Google Analytics) que permiten cuantificar el número de usuarios de forma anónima (nunca se obtendrán datos personales que permitan identificar al usuario) y así poder analizar la utilización que hacen los usuarios del nuestro servicio, a fin de mejorar la experiencia de navegación y ofrecer nuestros contenidos de manera óptima.

  • Redes sociales

    En este sitio web se utilizan cookies de terceros que permiten el correcto funcionamiento de algunas redes sociales (principalmente Youtube y Twitter) sin utilizar ningún dato personal del usuario.

UniversidaddeCádiz
Concepts 2024

Late Breaking Advances on Conceptual Structures

Organizers:

  • Roberto G. Aragón, Univ. of Cádiz
  • Manuel Ojeda-Hernández, Univ. of Málaga
  • David Lobo, Univ. of Cádiz

Keywords and Topics

  • Formal concept analysis
  • Fuzzy sets and fuzzy logic
  • Rough sets
  • Fuzzy rough sets
  • Interval-valued fuzzy sets
  • Operators in relational data analysis
  • Fuzzy relation equations
  • Mathematical morphology
  • Aggregation operators in relational data analysis

Content

There are many approaches for obtaining information from relational datasets and representing it by means of conceptual structures. Formal Concept Analysis (FCA) is a mathematical tool used for extracting and handling information from databases and it has been related to other strategies, such as Rough Set Theory, Possibility Theory, Mathematical Morphology, Fuzzy Relation Equations, fuzzy logic, etc. The combination of these methods has resulted in the creation of robust and efficient mechanisms that take advantage of the main properties of each of them. Furthermore, some of them have been developed with the intention of enabling the treatment and management of information with uncertainty. This Special Session focuses on both theoretical and applied tools developed within the aforementioned topics, which have been recently published or describe new unpublished research.

Workshop keynote speaker

Peter Eklund is program lead for technology internships at Uniting, the community services not-for-profit of the Uniting Church, Honorary Professor at Deakin University, and an elected fellow of Australian Computer Society. Peter is a senior editor at Expert Systems with Applications and in 2022, he and his co-authors won the Andrew P. Sage award for best IEEE transactions paper. Co-founder of three tech start-ups, Peter is advisor to ZTLment, a Copenhagen-based blockchain fintech.
Title: Enhanced natural language processing using semantic triples
Abstract: Semantic Information Extraction is the task of extracting important features from unstructured text. Semantic Information Extraction involves several tasks, examples of which may be Named Entity Recognition (NER), Relation Extraction, Topic Modelling, Entity linking, Open Information Extraction (OpenIE), Term extraction, and key-phrase extraction. With the advent of large language models and the availability of massive amounts of text data, natural language processing (NLP) tasks such as document classification, question answering (QA), and passage ranking have improved dramatically in recent years. One approach that has gained traction in the NLP community is OpenIE, a technique that automatically extracts semantic triples of the form <subject, verb, object> from natural language text without relying on pre-defined schemas or knowledge bases. In this talk, I explore the potential of semantic triples extracted using OpenIE in natural language tasks, these are document relevance classification, unsupervised question generation, and passage re-ranking. Specifically, I demonstrate how triples can be used to enhance the performance of these tasks by providing more accurate and comprehensive information about text.

Talks for the workshop

  1. F. Pérez, C. Bejines, D. López-Rodriguez, M. Ojeda-Hernández: Obtaining the necessary concepts in a partial formal context.
  2. V. Pristaš, M. Gowdru Shridhara, N. Fedurcová, D. Pillárová, R. Marek Rak, L. Antoni, O. Krídlo, S. Krajči, G. Semanišin: Formal Concept Analysis and Attribute Implications for Electricity Consumption.
  3. D. Pillárová, N. Fedurcová, R. Marek Rak, V. Pristaš, M. Gowdru Shridhara, L. Antoni, O. Krídlo, S. Krajči: Concept Lattices and Attribute Implications for Patient Outcomes after Cardiac Arrest.
  4. M.J. Benítez-Caballero, J. Medina, E. Ramírez-Poussa: Multi-Adjoint and One-Sided Concept Lattices.
  5. R.G. Aragón, J. Medina, S. Ruiz-Molina:  Towards the aggregation of MACL.
  6. F.J. Valverde-Albacete, C. Peláez-Moreno, I. de las Peñas-Cabrera, P. Cordero-Ortega, M. Ojeda-Aciego:  Progress in Formal Context Transforms.
  7. G.A. Aranda-Corral, A. Bundy, J. Borrego-Díaz, P.Y. Chan: Grounding problem in Formal Concept Analysis by means of Large Language Models.